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Abstract

I have selected three classical problems - dis-
crete Fourier analysis, linear prediction, and nonlin-
ear phase and frequency demodulatfon - to illustrate
the use of dynamic programming in control and signal
processing. The first two problems illustrate the use
of dynamic programming in the (re-) derivation of the
FFT and Levinson algorithms, two of the best known and
most widely used fast algorithms. The last problem
illustrates how dynamic programming can provide comfort
in those applications where recursively computable,
finite-dimensional sufficient statistics are nowhere
to be found.

\\ 1. Inl:r:oducticn2
When I was a graduate student at the University
of Washington in the late 1960s, the control students
studied dynamic programming and the communication stu-
dents didn't. I didn't. In the early 1970s, while
covering a controls class for one of my colleagues at
Colorado State University, I was forced to work through

1I. Dynamic Programming, the DFT, and the FFT

The DFT certainly constitutes one of the corner-
stones of modern Fourier analysis. Its uses range over
the entire spectrum (so to speak) of signal processing
applications. American Microsystems now markets a pro-
grammable signal processor chip with 256 16-bit words
of RAM and 256 17-bit words of ROM that performs 3
millfon 12 bit x 12 bit multiplies each second. The
chip can be programmed to perform 600 32-point complex
FFTs each second. With bit-slfce ucomputer architec-
tures or special purpose random logic, one can prcbadly
realize something like 25,000 256-point complex FFTs
each second. Special purpose FFT butterfly chips no
doubt exist. What this means is that DFT analysis in
control and signal processing problems can be carried
out in real-time.

N-1 N-
n'd “m o .
¥-1 jnto the sequence {Xmir\'l

The DFT is a mapping, DFT:{x
takes the sequence {x }

according to the rule

one of those classical dynamic programming problems X = Nil W™ me0,l,...,N-1
involving a weary salesman, a balky stationwagon, and e 0 N

a sales territory as big as the whole outdoora, I -32n/N

remember finding the insights and techniques of dynamic "N - e

programming interesting. I remember finding the prob-
lem fun to work. But I do not remember thinking, "...
here is a generally applicable technique that can make
my life in signal processing easier.”

In the mid-1970s I read a2 paper by Charles Cahn
{1) concerning the so-called Viterbi algorithm and its
application to FM demodulation. The idea was to extend
the threshold in FM by demodulating with delay, using
an adaptation of dynamic programming. Slowly but

Noting that W;qu = 1 ¥m, we may write X_n as follows:

N-1
x = ¢ x
m n N
n=0

This calculation may be viewed as the limit of the
following sequence of imbedded approximatiors (acommon
dynamic programming trick):

! surely I began to realize that traveling salesmen prob- () k-1 -m(k-n) 5
lems (and traveling salesmen, too) come in many guises. X, o= box Wy o k=1,2,.0008
I now believe dynamic programming has a réle to play n=0
in a variety of classical nonlinear filtering problems Note x(k) obeys the following recursion:
m

involving the demodulation of phase and frequency
modulated data. This is one of the points I hope to

 (k+1) -m (k) -m

make. l\m - wN Xm + NN X
N) Q =

If you are a control theorist who has grown up X:‘ - xm H xm ) - xOth

with dynamic programming you may be thinking my experi-
ences with dynamic programming are rather too provin-
cial to be at all typical. Without presuming to speak
for my colleagues, let me at least offer the following.
In 1967 Andrew Viterbl published what was to become a
prize-winning, and very influential, paper in the IT
Transactions. The paper was titled "Error Bounds for
Convolutional Codes and an Asymptotically Optimum De-~
coding Algorithm [2]". In this paper Viterbi derived
an algorithm (since dubbed the Viterbi algorithm) for
finding the most likely finite-state convolutional code
sequence, based on noisy data. As far as I know, the
Viterbl algorithm was not widely recognized as a for-
ward dynamic programming algorithm until Forney pub~

This 1s the so-called Goertzel algorithm for odtaining
the mth DFT variabie, xm, as the output of a digital

‘N—l

filter excited by the sequence {xn 0 Tae autput of

the filter is read at time k=N. See Figure 1.

Dynamic Programming and the Decimation~in-frequency FFT

The Goertzel algorithm is a nice dynamic program-
ming-iike solutfon for the DFT. However {t is not
efficient. Let's see 1f we can improve upon it. Con-

sider X;k) for even frequency indices m=2r:

k-1
lished his account of it in 1973 [3]. X;:) - X, ;h(k-n) , Kel,2,....8
n=0
l'l'hts work supported in part by the Ammy Research
Office, Resesrch Triangle Park, NC, and the Office of k-1 ~r(k-n) ‘
2Naval Research, Washingtom, DC. - T x, Wle e kel,2,...,N
In this section LLS is speaking. n=0
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For k even (say ke=2s), ’
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This shows that the 2s-point DFT approximant xg’)
be obtained from two s-point approximants. By choosing
&8=N/2 and continuing backwards in this way (for odd
sub-indices, ss well) one arrives at & backward dynamic
programming derivation of the decimation-in-frequency
FFT. See Figure 2 for an elementary representation of

a 4-point decimation in frequency FFT.
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Figure 1. Goertzel Filter for
DFT Component Xm
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Figure 2. Four Point Decimation
in Frequency FFT
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Figure 3. Predi;:o::_ne:ectlon. and Control of a
Noisy AR(N) Sequence
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I11. Detection, Estimation, and Control
Structures in the AR(N) Case: Kalman
Filters, Levinson Recursions, and
Dynamic Programming

Autoregressive (AR) models for signals, states,
and data play a starring role in many areas of signal
processing and control. By appropriately selecting
model parameters (and order) one can model the covari-
ance structure and spectral characteristics of more
general models. The so-called normal equations for
identifying the parameters are elegant and easily
solved with recursions of the Levinson-type.

In this section we tie up control, prediction,
detection, and estimation in the special case where we
ave dealing with a zero-mean, wide-sense stationary,
scalar autoregressive time series. The usual state-
variable and matrix block diagrams give way to scalar
variables and digital filter blocks of moving average
filters. The normal equations are high-lighted and
dynamic programming is used to derive the famous Levin-
son recursions.

Models

Let {xk) denote a scalar zero-mean, wide-sense

stationary autoregressive sequence that obeys the re-
cursion

N
x = I a +w, ¥k
k =1 ® *k-n k
W, : sequence of 1.1i.d. N(O.u:) ToV.8,
It 13 easy to see that the covariance sequence {rm}:m.

rm =t associated with the sequence (xk) obeys the

recursion
N 2
LA nil 'n Toen + 9, ém , me0,1,...,

From here one may write out the so-called normal equa-
tions:

-
o 1ot M| [ 1
l’l ro rl ase rN_z ﬂz = r2
: 2! . :

™N-1 1T W

1f the (an)q are known these equations are used to

Conversely, 1f the (rn)g are

solve for the {r }.
known, these equations are used to solve for the (an)y.

In much of what follows we will assume the sequence
(xk) is observed in zero-mean additive WGN:

z, =% + e vV k
n ¢ sequence of 1.1.d. N(O.a:) r.v.s.

The companion form state model for all of this
follows: .

Keap = A X + B,
2 = X

KN+l °: 0
L I A= :I p beC= | 0|, U -y,
0 .
*k-1 R :
xk aN aN-l""O 1

Noisy Prediction and the Kalman Predictor

The stationary Kalman one-step predictor for
the noisily observed AR(N) sequence s

Kpg = A X+ Klmx)

X T K
where
e 2,-1

K = APC(C’PC + cn)

- fkl,kz,....kN]' (1)
P = (A-KCHP(AKC') + 02 KK + o’ bb- @

X )

The Kalman prediction sequence {xk+1, for (zk+1)

can be interpreted as the output of an ARMA(N,N-1)
filter, driven by the prediction error sequence
(vk-zk-ik} or an ARMA(N,N-1) filter driven by the obser-

vation sequence {zk}. The resulting filter equations
are

- N R N
b = I a ot T ogv
el T 0% et T BV
or .
. N . N
LG BT R ! ™

where the coefficients, gt, can be defived by the char-
acteristic polynomial A(}) of (A-KC"):

N
sy =%+ 1 (g ~a Nt
o1 BT

See Figure 3 for a block diagram of this predictor.
Note that the noise-free MA predictor filter ,next sec-

N
tion), £ a, z ™, 1s preserved in the feedback loop,
n=]
but that the residual sequence VTR i{s now weighted
N -n
with a feedforward MA filter, I g,z -
n=1

Why is the noisy Kalman predictor ARMA and not MA?
The answer is that (zk). a noisy version of an AR signal
process, obeys an ARMA(N,N) difference equairion. As an
AR(N) model has an MA(N-1) predictor, it is at least
logical (1f not intuitive) that an ARMA(N,N) process has
an ARMA(N,N-1) predictor,

The Noise Free Predictor

The prediction vector ik consists of the terms

L N

Ef /

1 ‘k~1'zk-2""]

E[xk’zk-l'zk-2"" 1
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When a:-o, then z, =X ¥ k and

E[xk_“/zk_n.l._n_l,...]

- l-':[)(k__“/x“__“,...] ® X n=1,2,...
So in this case

"k-mﬂ
*x-N+2
Xe/e-1 " .
k-1
| k/k-1 ]
It follows that P, the covariance Etik-xknﬁk-xkr
is
0 ... 0
Pai’ . (%)
¢ 0
0..0 02
u

Calculating K by substituting (4) into (1) one
finds that AQA) = AN and hence g"a, - This implies, as

one would expect, that the prediction filter (3) re-
duces to the purely moving average relation

N

I a
i=1

Minimum Variance Control

K+l 1 Zkel-t

One of the simplest control strategies is minimum
variance regulation where one desires to minimize the
variance of the AR(N) output sequence {x.k), and force

E(xk)-O. The well known separation principle allows

one to generate a feedback control strategy assuming
noisefree measurements, 1.e. =0, and then use the
same strategy in the noisy cage but with the Kalman
filter estimates (i‘tk) replacing the actual filter out-

puts (xk).

Assume then we have the system
N

T E et T e

vhere (vk} i3 our feedback control sequence. We would
like to minimize
EGD= E( Y a +u )2

% pop 1 Tt T M
=1
N

2
E (wk + 2ukvk + 2wk(i£1 aixk—i) +

N
L a )
fug 17Kt

- E(w:) + 2Bm v, v E(,)

(v, + 2

N N
2
+ 28w (I ax ) +E((v + I ax ) ).
1=1 i=1
Stnce {w } is uncorrelated with {x ¢}, 121, and since

:("kvklvk) e 0, 1t is clear that B(a{) ts minimized by
clwosing

Ve T T T A%y

This control is illustrated in Figuree 3 as a feedback
loop running up the left side of the figure. The feed-
back loop to the top compute box shows how X, would be

used for minimum variance control in the nolsy case.

Detection and the Likelihood Ratic

Consider the hypothesis test Ho vs. Hl with

“0 Tl k=0,1,...,K

“1 B zk-xl‘*l-nk , k=0,1,...,K :
This test is equivalent to the test ﬁo vs. ﬁl where 1

P () I . 2 k

“0 v z, : N(O,on)

SN ¢ ¥ 2, . R -

Hl SR N(o,po-l-on) i Pyt variance of x, 3
and vil) =z - ;(k is the innovations sequence in the

Kalman filter, The log-likelihood ratio for this
problem is

K K

IR = K - lzzv:+-1-z:z:
pata. k=0 o k=0
0 'n n

Thua the statistics Zv‘z‘ and }:zi are sufficlent and the
log-1ikelihood ratio may be computed as in Figure 3.

The Normal Equations are Fundamental

It should be clear from Figure 3 that the AR coef-
ficients (a“)l:_ characterizing the sequence (xk) are

fundamental to the implementation of control, predic-
tion, and detection algorithms on noisily observed AR
sequences. Unfortunately, sequences rarely come tagged
with their corresponding AR parameters. More typically
finite records of them come to us and we estimate a
covariance function (or power spectrum), often by FFT-
ing, squaring and windowing, and inverse FFT-ing.

These estimates may then be used to solve for the coef-

ficients (un)‘; from the normal equations

ro . rN-l 01 r
X, . a r
oo 2=} ()
Tyep c - - T ay .

This makes the normal equations fundamental and arouses
our interest in efficient ways of solving them.

Dynamic Programming and Levinson's Algorithm .
Rewrite the normal equations as
N
I a ) )=t , n°l,2,...,N (4a) N
aol ™ |n-m| n

These equations characterize the (an);f that minimize

the quadratic form

N N N
Q,*r, ~ 27§ ar_ + L L aa €
LI B T In-m|
The minimum 1a
N
N N
QN"I"""N) -t - 4 % T (4b)

n=]




Assuming the normal equations to be non-singular, we
may write

N
o e 3 Sor, . w28 )
n=
N N .
Q:(tl.....rn) “r,-1 Ir sV ¢ (6)

s=lp=] ® W™ 0
Vrite out Q“(-) as follows:
N-1 N-1 N-1

Gulrgeemeom=rg 2 L opryZogiyt B L og0, Tl
' w1

2
+ z,,ff'ﬂ“"'l"“‘l + ayt

0
2 .
= oyTo 20NN -1 (TONTN-1 - o P oY
So the minimization of Q“(rl....,r“) with respect to
(u-}'; leads to

Q:('l"""u) - min“ QN(rl""‘rn)
(c-)l

2
- :n[a“x-o-Zo“tn-O- uin“_lQ“-l(rl-c'r“_l. ves)}

(a-)l

* atnfojr 2o r K 1 (r gty o] (D)
]
This equation contains the essence of d

ning and the principle of optimality: Once the
(°1""'°Il-1) are found, Q::i' may be constructed and

ay, found as a function of £geTy and hl""'“ll—l,'

o;u continues in this way. At each step of the way
the minimization problem on QN-I(') is quadratic.

Let's use (6) in the RHS of (7):
N 2
Q“(rl....,rﬂ) - :m{u“to - Zm“rN + !0

N
N-1 N-1 N-1
- ..51 nfl(rm-a“r“_.)sm (r ~OyFyn) |
N-1 N-1
2 N-1
» pinfas(r,-L L r, § r, )
ay N0 1) peg N2 mn Nen
N-1 N-1
-1
20 (e~ v I S e, )
INSTx ael ey ™ N-n

N-1
+ QN_I(rl, cee .r"_l)]
It follows easily that the minimizing value of oy is
N-1 N-1
- I L r s" !

N a=l ey & 0
N N1 Re1 1

.- L I ¢
0..1“.1!--1

Use (5) in the numerator to get

T
M-n

t
N-n

N-1
N-1
ry- L a 4
N N pey 8 ¥
N N-1 N-1
to - L L Nem n“-l N
) w=l n=l ©om A
Let's call
N-1
c:'l -« T Tyem l:;l , B®1,2,.,.,N-1
m=l
and see if we can find a recursion for it. 1In the
meantine
t, - NEI e
N n N-n
N n=1
ay = Bl (8)
r, -~ L CN-]' r
0 =1 N-n
Note
2 N-1 N-1
N N-1 N N-1
ay (ro T Cn rN_n)-ZaN(rN - I o, rN_n)
n=l n=1
N-1 N-1
N N-1 N N-1
=a(r.-La ‘v, )-2ay(r,~Lfa “r
N*'N el B N-n NN aml ® N-n)
N N-1
1 N-1
oy (ry - nfl %  TN-n’

So we have this recursion for the minimum prediction
error:

N1
» N-1 N N-1
QlTyoeeeomg)=Qy (Fppeee "N—l)"‘n('ll-..ff'n Ty-n

Now use (4b) to get

N N-1 N-1
N-1 N N N-1
r,~larer-L a r~r+laa r
0-_1 Om-lm nﬂﬂn_laﬂﬂ N-n
Oor
N-1 N-1
i u: LA (u:.l -a: Sea’ T
m=1 m=1
Thus from the recursion on Q= we get this recursion for
N
the oyt
N N-1 N N-1
a oL - o o , m*1,2,,.,,M=1
Our one remaining problex is C:. Write it as
N
N N
C = I &8 r
o ™ Nel-n
Thus C: must be the molution of
NN
L c ¢ =, 0,2, ,N-1 (L]
-l " jn-u) M1l-n
It therefore satisfies a recursion just like u:. In

fact (9) is just (4a) with the RHS vector turned upside
down. By the symmetry of R (rl-_nl). this simply

turns the eolution vector ‘“z) upside down. Thus
c:- ¢:ﬂ_. . w=1,2,...,N

avd ve are done.

Summary: The Levinson recursions may now be written
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N-1
N-1
0w~ I a | 4
N nel ® N-n
N-1
I'n=~ ¢ a
0 n=1

N-1 r
N-n "N-n

oF -l u: u::; , m*l,2,...,N-1

m
N-1
NNl N N-1
W7 ey -y Oy Toay Ty

To get these equations into their fully modern form,
one must look at a backwards prediction.

IV. Frequency Tracking and Dynamic Programming

Phase and frequency tracking problems comprise
some of the most nettlesome nonlinear filtering prob-
lems in the entire reslm of signal proceseing and com-
munication. A typical problem is the following:
observe the sequence (zk} with

2, =8 +n

k k k
Jw k
s e k
Ju, k
and estimate the FM sequence (uk)- Here s, e is

a randomly frequency modulated signal. The sequence
(nk} is additive noise and {w; } 1s a sequence of angular

frequencies. Assume nk:N(O,cz) (complex normal).

We wish to observe a record of data (zk}g“ and
infer the most likely sequence of frequencies, {Gk)gn.
For our model of {mk) we take each wk:(o,Zn/Q.....
27(Q-1)/Q}, evolving according to

“en T Uk-18 * Uk
YeNsn ¥ Uy 2=0,1,...,N-1 ¥ k

A typical sequence (uk) is 1llustrated in Figure 4. The
independent increments sequence (ka) i1s a sequence of
i.1.d. r.v.s. selected in such a way that the transition
probabilities

f(ukN/w(k_l)N)
correspond to our notion of physical reality. Physti-
cally we may think of the sequence (mkN} as a finite-

state random walk on the circle with an unusual transi-

tion probability structure. Typical trajectories for
Ju k

(mk} and (sk-e k } are 1llustrated in Figure 4.

Let's organize the sequence {z )KN into contiguous
k'O

blocks of length N, of the form (sz+l}::3‘ See Figure
5. Recall

| Jugy kv .
Zuner T € PeNee

JukN(kN*l)
= e

MY

w o Kl N-1
Write (2 } " = U {2z } . Consider the joint den-
K0 T g kN4L'2e0

KN K-1,
sity of (zk)o and (“kN)O :

K~-1 N-1

K-1
f(U (2 | RN (YN bl
ksp WHLO kN'O

Exploit the structure of (zk) and (”kN} to write this
as
K-1 N-1 (kN+L) zl(-l ou{ ,
f(+,*) * »n N (e ,0 )1 f Y 19N
T k=0 10 ZkNH =0 (1)

The natural logarithm of f(.,-) is proportional to

Yepy

_ ’J“kN(kN+l)
enf(-,-)~2Re ~li Ktl Ntl ZeN+e
20 kw0 =0
n
K-1
Dot Blagdug gy
k=0
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Figure 5. Data Processing and Frequency Trellis
Illustrating Evolution of Surviving
Frequency Tracks
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e e} -

K-1 ~=jw, kN N-1 L T )
tnf(-,+) 2Re- —1-2- L e o I Lner® “kN +
2°n k=0 L=0

N-1 -
+ ¢ inflw
k=0

Let xm(e) denote the finite Fourier transform

on@ (k-1)8)

N-1
[}
(@)= ¢ =z o
Xen Lo T
Then the log-likelihood function may be written
K-1 <~jw, kN
l.nf(-,-)~2]!¢-L I e kN ka(e.uk.N)
20 k=0
n
N-1
+ I nf(u, . J/uw )
k=0 kN’ T (k-1)N

KN
0 is

Our notion of the most likely sequence (Gk)
the sequence

-

Opneg = Uy ¢ 270102, N1, ke0,1,... K1

wvhere (':‘m)g—l is the sequence that maximizes f(-,-).

Thus we consider the maximization problem

K-1 -juw, kN
Re I e i
k=0

nax -
K-1
}0

ka(e-”kN)

=°~|"‘

{uy

K-1
+ & inflo, /o )
k=0 kN7 (k-1)N
Write this as
max T

K-1
(”kN}O

with T satisfying the following recursion:

K-1

1 “Juen®y  (omw, )
Ty = rt-l“'nf(”tﬂlm(t-l)ﬂ)* 5 Re e N kN

n
So our maximization problem becomes

max [ max rx_z "nf(“(K-l)N/“(K-Z)N) +
K~-1 K-3
logedk-2 Talo
-jw (k-1)N
1 (K-1)N
+ -~ Ree X (e-u)( -
o x-nN K DY

This form leads to the following observation: the
maximizing frequency trajectory, call it (t;m). passing
fhrough M(K-Z)N on its v:y t:_"(K-I)N' must arrive at
@ (g-2)N along a route {uw .}, .thlt mximifes-rl(_z.
If it did not we could retain ®(k-2)N and Y(K-1)N and
with a different sequence to get a larger rK-l' It is
this observation that forms the basis of forward
dyanmic programming.

Recall the YN c(2wr/Q}g'_é. This means the
finite Pourier transform xm(e) must only be evaluated
on 9=27r/Q, r=0,1,...,Q=1. The best way to do this 1s

to zero-pad (ka")t::; to obtain a Q-point sequeace
that can be FFT'd to get ka(e-Zur/Q). See Figure S.
Then for cach node on Figure 5 we evaluate xm(e-ZWr/Q),

and find the best route through the trellis with a
dynamic programming algorithm. This completes our
algorithm for moderating the usual peak-picking rule on
the FFT with prior information t(“kN/w(k-l)N)'
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